Todas las publicaciones (440)
BUENAS... COMO ANDAN??? SALUDOS DESDE ARGENTINA
estos algunos de los problemas o circunstancias que vivimos a diario.
1)
De los 45 alumnos inscritos en un grupo, 40% son mujeres. ¿Cuántos hombres hay?
Para resolver este problema también hay dos formas de hacerlo: Al obtener el resultado de cuántas mujeres hay, se resta esa cantidad al total de alumnos.
Otra forma más simplificada es restar el porcentaje por el total: 40% - 100% = 60%.
Entonces se multiplica ese porcentaje por la cantidad que se conoce:
.60 x 45 = 27.00
Como observarás el resultado es el mismo.
Ejemplo: 2
Calcular descuentos de artículos deportivos en 15%.
Antes del descuento | Con el descuento |
Bicicleta: $450.00 | 382.50 |
Patines: $150.00 |
Para calcular cuánto es de descuento, se multiplica la cantidad por el descuento:
450 x .15 = 67.50
Este resultado se resta a la cantidad inicial: 450 – 67.50 = 382.50
De esta forma se obtiene el resultado.
Como anda la gente?? todos bien??? Saludos desde Argentina!!!!
En muchas ocasiones nos preguntamos qué hacer para lograr que nuestros estudiantes se motiven y lleguen a comprender muchos de los conceptos que desde el área de las matemáticas puede encontrar; nos enredamos y enredamos las mente de nuestros estudiantes cuando tratamos de darle sentido a fórmulas,ecuaciones y a un sinnúmero de datos sin encontrarles el verdadero significado que desde la misma ciencia nos brinda el área.
Al tener herramientas que nos brindan grandes posibilidades debemos no pensarlo dos veces y empezar de una ves a llevarlas al aula para hacer de nuestro aprendizaje más significativo.
Beatriz
Por petición de algunos miembros que en sus investigaciones han incluído nuestro proyecto, relaciono a continuación nuestra trayectoria...
- Julio 2010: Ponencia en el 10º Congreso Internacional de Informática Educativa RIBIE-Col.
Mayo 2011: Escogencia para participar en el “ICT Training for Colombian Teachers” en Incheón, Corea del Sur.
- Abril 2012: Conferencia 3er. Congreso Internacional “Las TIC aplicadas en los procesos de aprendizaje y enseñanza de las Ciencias” México (Vía Skype) (única conferencista colombiana invitada)
- Mayo 2012: Ponencia Tercer Congreso Internacional de TIC y Pedagogía. Barquisimeto, Venezuela
- Julio 2012: Ponencia 11º Congreso Iberoamericano de Informática Educativa, RIBIECOL. Bogotá, Colombia, julio de 2012. Obtuvimos el 2º Premio categoría Educación Superior con el proyecto colaborativo realizado por los docentes Beatriz Rodríguez y John Jairo Escobar: Entornos Virtuales para la Enseñanza y el Aprendizaje del Cálculo Multivariado
- Julio 2012: Publicación de En TIC Confío
- Agosto 2012: Ponencia III Congreso internacional y VIII nacional de investigación en Educación, Pedagogía y Formación docente. (Expuesta por John Jairo Escobar) Bogotá, Colombia.
- Septiembre 2012: Dos Ponencias Congreso Iberoamericano de Aprendizaje Mediado por la Tecnología. México DF, México. (Una MathClub Virtual y la otra proyecto con John Jairo Escobar)
- Octubre 2012: Conferencista y tallerista en el IV CONGRESO INTERNACIONAL DE MATEMÁTICA EDUCATIVA. Ibagué, Colombia.
- Mayo 2013: Experiencia Significativa con uso Pedagógico de TIC premiada por Colombia Aprende y el MEN Ver Video de la Experiencia
- Julio 2013: Dos ponencias aceptadas en el XIV Encuentro Internacional Virtual Educa Medellín, Colombia. (Una MathClub Virtual y la otra proyecto con John Jairo Escobar)
- Julio 2013: Conferencia III Congreso Nacional "Nuestras TIC" Santa Marta, Colombia
- Septiembre 2013: Ponencia aceptada en el VII Congreso Iberoamericano de Educación Matemática. Montevideo, Uruguay
- Septiembre 2013: 1er. Encuentro Nacional de Experiencias Significativas con Uso Pedagógico de TIC Bogotá, Colombia (Invitada premiada por el MEN)
- Octubre 2013: Semana de las Ciencias Unimagdalena. Santa Marta, Colombia. Conferencista invitada.
- Diciembre 2013: SIMPOSIO INTERNACIONAL DE EDUCACIÓN Y PEDAGOGÍA: LA DIDÁCTICA HOY. Cali, Colombia. Ponente y exaltación al mérito.
- Abril 2014: Experiencia grabada para el programa Escuela Colombia del Ministerio de Educación Nacional. Ver Vídeo: Innovar para aprender matemáticas
- Junio 2014: Ponencia presentada en el XV Congreso de Enseñanza y Aprendizaje de las Matemáticas. Baeza, España.
- Noviembre 2014: Ponencia en el Congreso Iberoamericano de Ciencia, Tecnología, Innovación y Educación. Buenos Aires, Argentina.
- Mayo 2015: Participación en la Internacional Conference on ICT and Post-2015 Education http://icie.qingdao.cn/index.html . Invitada por la UNESCO.
- Julio 2015 Condecoración Excelencia Educativa, MEN
- Septiembre 2015. International Guest Speaker in the 65° ICEM
- Agosto 2016 Seleccionada MIEExpert (Microsoft Innovative Educator Expert)
Continuará....
Aquí publicaré los enlaces para que accedan a las grabaciones de las clases virtuales que realicemos, para aquellos que no hallan podido asistir y estén interesados en la temática estudiada.
CÁLCULO DIFERENCIAL
TEMA: FUNCIONES Realizada el 19 de marzo de 2012
TEMA: LIMITES INDETERMINADOS DE FUNCIONES REALES Realizada el 4 de abril de 2012
TEMA: LIMITES INDETERMINADOS FACTORIZANDO Realizada el 25 de marzo de 2013
TEMA:LIMITES INDETERMINADOS CERO SOBRE CERO Realizada el 14 de abril de 2013
TEMA: MAXIMOS Y MINIMOS DE FUNCIONES REALES Realizada el 21 de mayo de 2012
TEMA: CRITERIO DE LA PRIMERA Y SEGUNDA DERIVADA. Realizada el 5 de noviembre de 2012
CALCULO INTEGRAL
TEMA: LA INTEGRAL DEFINIDA. TEOREMA FUNDAMENTAL DEL CÁLCULO Realizada el 10 de marzo de 2013
TEMA: INTEGRACIÓN POR PARTES Realizada el 3 de abril de 2012
TEMA: INTEGRACIÓN DE FUNCIONES RACIONALES POR FRACCIONES PARCIALES Realizada el 1º de mayo de 2012
TEMA: INTEGRACIÓN DE FUNCIONES POR PARTES Realizada el 28 de octubre de 2012
TEMA: AREA ENTRE DOS CURVAS DE FUNCIONES Realizada el 29 de sept de 2013
TEMA: INTEGRACION DE FUNCIONES POR EL METODO DE CAMBIO DE VARIABES Realizada el 1º de septiembre de 2013
CÁLCULO MULTIVARIADO
TEMA: DERIVADAS PARCIALES Realizada el 2 de Octubre de 2011
TEMA: DERIVADAS PARCIALES Realizada el 8 de septiembre de 2013
TEMA: EXTREMOS DE FUNCIONES DE DOS VARIABLES Realizada el 22 de octubre de 2011
TEMA: CONCEPTOS BÁSICOS. Realizada el 11 de marzo de 2012
TEMA: DERIVADAS PARCIALES DE PRIMER ORDEN Realizada el 18 de marzo de 2012
TEMA: DERIVADAS PARCIALES DE ORDEN SUPERIOR Realizada el 25 de marzo de 2012
TEMA: MAXIMOS Y MINIMOS DE FUNCIONES DE VARIAS VARIABLES Realizada el 29 de abril de 2012
TEMA: INTEGRALES ITERADAS Realizada el 27 de mayo de 2012
MATEMÁTICAS BÁSICAS
TEMA: LOS NÚMEROS REALES... Realizada el 28 de marzo de 2015
ESTADÍSTICA
TEMA: Medidas de tendencia central y cuartiles para datos no agrupados. Realizada el 1 de marzo de 2015.
TEMA: Medidas de Tendencia central y dispersion datos agrupados. Realizada el 5 de abril de 2015.
TEMA: Estadística Descriptiva. Realizada el 3 de mayo de 2015
Gestión de Aulas Virtuales en Moodle. Inicia el 26/2
febrero 26, 2013 a las 6am a marzo 26, 2013 a las 12pm.
Códigos QR aplicados a la educación y al Marketing Educativo
febrero 26, 2013 a las 6pm a marzo 18, 2013 a las 6pm.
Herramientas de evaluación para la enseñanza con TICs.
marzo 4, 2013 a las 6pm aabril 8, 2013 a las 7pm.
Curso: La animación de grupos.Inicia el 19/3- Nueva Fecha
marzo 19, 2013 a las 6pm a abril 16, 2013 a las 7pm.
En cada curso otorgaremos a los miembros de Math Club virtual una beca del 50% para quien la solicite.
Saludos!
Natalia Gil - curso.excellere@gmail.com
PARA UNIRSE A UN GRUPO
1. Clic en GRUPOS
2. Clic en el grupo q deseas unirte.
3. Clic en: has clic para solicitar el acceso
4. Clic en Enviar solicitud
PARA CAMBIAR LA FOTO DEL PERFIL
1. Clic en MI PERFIL
2. Acercar el puntero donde señalo en la figura, hasta q aparezca CAMBIAR FOTO y hacer clic.
3. Hacer clic en SELECCIONAR ARCHIVO
4. Bajar la página y hacer clic en GUARDAR
b=10cm,m < B =53° , c= 12cm
Su Parábola...!!!
Por último presentamos un resultado demostrado por Roberval usando movimientos, quizá como más abajo, y demostrado rigurosamente, a la manera de Arquímedes, por Pascal en 1658.
En la figura siguiente, prolongamos el arco (naranja) en linea recta hasta un punto tal que la longitud es la mitad de la longitud del arco
Al mover sobre la espiral, el punto describe una parábola porque la longitud del arco y por tanto aumenta doblemente con el aumento de (una vez por aumentar el radio y otra por el ángulo, que aumenta en la misma proporción que el radio), es decir aumenta proporcionalmente al cuadrado de
El resultado de Roberval y Pascal es:
- La longitud del arco verde de la espiral (arco ) es igual a la longitud del arco rojo de la parábola (arco ).
Además se cumple que:
- El área encerrada en el perímetro verde es igual al area encerrada en el perímetro rojo.
Demostramos que al mover el punto sobre la espiral, el punto se mueve en cada instante a la misma velocidad que el punto :
Descomponemos el vector velocidad del punto de la espiral en 2 componentes rectangulares: uno con la dirección del radio vector y otro perpendicular a éste.
Como la tangente a la espiral tiene la dirección de la suma de las componentes rectangulares, éstas estarán en la misma proporción que la que hay entre y , donde es la subtangente polar.
Descomponemos el vector velocidad del punto de la parábola en 2 componentes rectangulares: uno con la dirección de y otro con la de
Como la tangente a la parábola tiene la dirección de la suma de las componentes, éstas estarán en la misma proporción que la que hay entre y , donde es la intersección de la tangente con el eje de la parábola.
Pero , y , por la propiedad de las tangentes a la parábola, arco, por la construcción de la parábola, y arco, por la propiedad de la subtangente polar de la espiral.
Por tanto, en cada instante la razón entre los componentes de la velocidad es la misma para y para
Como al moverse la componente en la dirección es igual en magnitud a la componente de en la direción , resulta que en cada instante la magnitud de la velocidad de es la misma que la de y por tanto y recorren longitudes iguales entre los mismos instantes.
El área encerrada en el perímetro verde es igual al área encerrada en el perímetro rojo porque ésta es igual a la tercera parte del rectángulo y éste es igual al sector (que es igual a los triángulos y ), y Arquímedes demostró que el área del sector es el triple del área barrida al generar la espiral.
Calculadora Revolucionaria
QAMA
(Quick Approximate Mental Arithmetic) es una calculadora cuyo aspecto es similar al de una calculadora de las que estamos acostumbrados a ver, pero que tiene un funcionamiento ligeramente distinto. Cuando introducimos una operación cualquiera, QAMA no nos da el resultado directamente sino que nos obliga a introducir una estimación del resultado antes de darnos el correcto. Es decir, QAMA nos pide que hagamos un esfuerzo mental para calcular un resultado más o menos aproximado de la operación que le hemos introducido. Y eso con operaciones sencilla, como sumas o multiplicaciones de números no muy grandes, puede ser fácil, pero cuando nos metemos con números más grandes, o raíces, o logaritmos, o funciones trigonométricas la cosa es mucho más complicada, por lo que debemos entender bien qué operación le estamos pidiendo a QAMA para poder proporcionarle una buena aproximación.
¿Cómo se relacionan estas dos ciencias y a la vez dos artes, que parecieran no tener nada que ver?
La danza y las matemáticas se relacionan a través del tiempo en el espacio.
En la danza pueden verse como toda suerte de combinaciones de círculos y líneas, se forman ángulos y líneas con el cuerpo...es decir geometría! Y existen muchas formas de experimentar físicamente la geometría. El cuerpo puede crear muchas forma o moverse en un patrón particular y cuando añadimos más ejecutantes la variabilidad es enorme!
Cada vez que bailamos creamos un sinfín de operaciones matemáticas basadas en el movimiento de nuestro cuerpo, que junto con principios de la física nos pueden llevar a un cálculo exacto del movimiento realizado.
Inclusive más, podemos físicamente experimenta
r montantes de tiempo, estos montos pueden ser sumados, restados, multiplicados y supuesto el espacio puede ser dividido...
Variadas características aunque, desafortunadamente, también comparten el siguiente aspecto, ambas son enseña das a través de la memorización. La danza se enseña a menudo a mediante la repetición de estructuras organizadas (los pasos), hasta que los alumnos puedan ejecutar la secuencia completa sin pensar. En forma similar, las matemáticas se enseñan frecuentemente mediante la repetición de formulas o cálculos (ej: las tablas de multiplicar), hasta su completa memorización sin mediar pensamiento o análisis.
Sin embargo, el problema con este tipo de aprendizaje es que no ayuda a desarrollar "pensamiento crítico" y "habilidades de análisis", es decir la habilidad de aplicar la información en diferentes situaciones y el interés de proseguir el aprendizaje en dicha disciplina.
Artículo original: http://psy-flow.com/en/node/40
queij me podria ayudar en la pagina 3 la ultima actividad le agradesco de todo corazon gracias